韩瑜

编辑:时间:2023-11-20 23:33:45 浏览次数:

姓名

韩瑜

性别

出生年月

1989年10月

职务/职称

副教授

学历/学位

博士

博导/硕导

硕导

所学专业

运筹学与控制论

电子邮箱

hanyumath@163.com

     学术研究领域

     向量优化,向量均衡,集值优化

     荣誉称号和社会团体兼职

   担任《Annals of Operations Research》,《Journal of   Computational and Applied 

   Mathematics》,《Optimization》,《Optimization Letters》,《Operations Research 

   Letters》《Journal of Optimization Theory and   Applications》,《Journal of the

   Operations Research   Society of China》,《Acta Mathematica Scientia》, 

  《Mathematical Methods of Operations Research》,《Journal of Industrial and 

   Management Optimization》,《Pacific Journal of Optimization》等期刊审稿人

     讲授课程

     概率论与数理统计,数学分析

     科研情况

    2019年入选江西财经大学“百人计划”青年学科带头人,2022年获得江西财经大学“青年教师科

    研五强”。在向量均衡问题和集优化问题的解的存在性、适定性、解集的拓扑性质:连通性和弧

    连通性,非线性标量化函数的凸性、连续性、Lipschitz连续性和Hölder连续性,集值映射的方

    向导数和次梯度以及含参向量优化问题、含参向量均衡问题和含参集优化问题的解映射的上半连

    续性、下半连续性和Lipschitz连续性等方面进行了深入的研究工作。近年来,在《中国科学-

    数学》、《Journal of the Operations Research Society of China》、《Operations 

    Research Letters》、《Journal of   Optimization Theory and Applications》、

   《Optimization》、《Mathematical  Methods of Operations Research》、《Applied 

    Mathematics Letters》等国内外重要期刊发表(含在线发表)论文33篇,其中SCI论文31

    篇,中国数学会T类期刊论文23篇,主持国家自然科学基金-青年项目1项和省自然科学基金

    -青年项目1项。 31届欧洲运筹学会议于2021年7月11日至14日在希腊雅典举行。值此会

    议之际,优化领域知名的SCI期刊《Optimization》计划出版一期特刊“on Recent 

    Advances in Vector and Set Optimization”,被客座编辑Vicente Novo 和 Lidia 

    Huerga 约稿(论文6)。

     已经过同行评议的论文

  1.   Yu Han, Directional derivative and subgradient of cone-convex set-valued 

  mappings with applications in set optimization problems, Journal of the 

  Operations Research Society of China, DOI:10.1007/s40305-023-00454-8 (中国数学会

  T1期刊,已在线发表

  2.   Yu Han, Sheng-jie Li, Stability of the approximate solution sets for set 

  optimization problems with the perturbations of feasible set and objective 

  mapping, Optimization, DOI:10.1080/02331934.2023.2231492   (SCI已在线发表)

  3.   Yu Han, Ke-quan Zhao, Stability of optimal points with respect 

  to improvement sets, Journal of Optimization Theory and Applications

  199 (2023), 904-930.  (SCI)

  4.   Yu Han, Weak Henig proper solution sets for set optimization problems, 

​  Journal of Nonlinear and Variational Analysis, 7 (2023), 925-943.  (SCI)

    5.   Yu Han,   Kai Zhang, Semicontinuity of the minimal solution mappings to 

    parametric set   optimization problems on Banach lattices, Optimization, 72 

    (2023),1961–1993.    (SCI)

    6.   Yu Han,   Density and connectedness of optimal points with respect to 

    improvement  sets,   Optimization, 72 (2023), 979–1008.   (SCI)

    7.   Yu Han,   Connectedness of the approximate solution sets for set 

    optimization problems,Optimization, 71 (2022), 4819–4834.   (SCI)

    8.   Yu Han,   Some characterizations of a nonlinear scalarizing function 

    via  oriented   distance function, Optimization, 71 (2022), 4785–4817.   (SCI)

    9.   Yu Han,   Nan-jing Huang, Stability of the set of solutions for 

    generalized vector   equilibrium problems with cone 

    constraints, Optimization, 71 (2022), 2491–2517.   (SCI)

    10.  Yu Han,   Painlevé-Kuratowski   convergences of the solution sets for 

    set optimization problems with cone   quasiconnectedness, Optimization, 71 

    (2022), 2185–2208.   (SCI)

    11.   Yu Han,   A Hausdorff type distance the Clarke generalized directional 

    derivative and   applications in set optimization problems, Applicable 

    Analysis, 101   (2022), 1243–1260. (SCI)

    12.   Yu Han,   Nan-jing Huang, Ching-Feng Wen, A   set scalarization 

    function and Dini directional derivatives with applications   in set 

    optimization, Journal of  Nonlinear and Variational Analysis, 5 (2021), 909–

    927.  (SCI)

    13.   Yu Han,   Connectedness of weak minimal solution set for set 

    optimization problems,  Operations   Research Letters, 48 (2020), 820–

    826.  (SCI)

    14.   Yu Han,   Kai Zhang, Nan-jing Huang, The stability and extended well-

    posedness  of the   solution sets for set optimization problems via the 

    Painlevé-Kuratowski convergence, Mathematical Methods of Operations   Research, 

    91 (2020), 175–196.  (SCI)

    15.   Yu Han,   Nonlinear scalarizing functions in set optimization 

    problems, Optimization,   68 (2019), 1685–1718.  (SCI)

    16.Jia-yu Mao, San-hua Wang,  Yu Han,   The stability of the solution sets for 

    set  optimization problems via  improvement sets, Optimization, 68 (2019), 

    ​2171–2193.  (SCI)

    17.   Yu Han,   San-hua Wang, Nan-jing Huang, Arcwise connectedness of the 

    solution  sets for   set optimization problems, Operations Research Letters, 

    47 (2019), 168–172.  (SCI)

    18.   Yu Han,   Nan-jing Huang, Existence and connectedness of solutions for 

    generalized   vector quasi-equilibrium problems, Journal of Optimization Theory 

    and   Applications, 179(2018), 65–85.  (SCI)

    19.   Yu Han,   Lipschitz continuity of approximate solution mappings to 

    parametric generalized vector equilibrium problems, Journal of Optimization 

    Theory  and Applications, 178(2018), 763–793.  (SCI)

    20.   Yu Han,   Nan-jing Huang, Continuity and convexity of nonlinear 

    scalarizing functions   in set optimization problems with 

    applications, Journal of Optimization   Theory and Applications, 177(2018), 679

    –695.  (SCI)

    21.   Yu Han,   Xun-hua Gong, Nan-jing Huang, Existence of solutions for 

    symmetric  vector   set-valued quasi-equilibrium problems with 

    applications, Pacific Journal   of Optimization, 14(2018), 31–49.  (SCI)

    22.   Yu Han,   Nan-jing Huang, Lower semicontinuity of solution mappings for 

    parametric    fixed point problems with applications, Operations Research 

    Letters,   45 (2017), 533–537. (SCI)

    23.   Yu Han,   Nan-jing Huang, Jue Lu, Yi-bin Xiao, Existence and stability of 

    solutions to  inverse variational inequality problems, Applied Mathematics 

    and  Mechanics-English Edition, 38 (2017), 749–764.  (SCI)

    24.   Yu Han,   Nan-jing Huang, Jen-chih Yao, Connectedness and stability of 

    the approximate solutions to generalized vector quasi-equilibrium 

    problems, Journal of  Nonlinear and Convex Analysis, 18(2017), 1079–1101.   (SCI)

    25.   Yu Han,   Nan-jing Huang, Well-posedness and stability of solutions for 

    set optimization problems, Optimization, 66 (2017), 17–33.  (SCI)

    26.韩瑜,黄南京,含参广义向量均衡问题有效解的稳定性,中国科学:数学,

    47 (2017),397–408. (权威A+期刊)

    27.   Yu Han,   Nan-jing Huang, The connectedness of the solutions set for 

    generalized vector   equilibrium problems, Optimization, 65 (2016), 357–

    367.  (SCI)

    28.   Yu Han,   Nan-jing Huang, Some characterizations of the approximate 

    solutions to generalized vector equilibrium problems, Journal of Industrial 

    and Management Optimization, 12 (2016), 1135–1151.  (SCI)

    29.   Yu Han,   Nan-jing Huang, Existence and stability of solutions for a 

    class of    generalized vector equilibrium problems, Positivity, 20 (2016), 829

   –846.  (SCI)

    30.   Yu Han,   Xun-hua Gong, Semicontinuity of    solution mappings to 

    parametric generalized vector equilibrium   problems, Numerical Functional 

    Analysis and Optimization, 37 (2016), 1420–1437.  (SCI)

    31.   Yu Han,   Xun-hua Gong, Continuity of the efficient solution mapping for 

    vector   optimization problems, Optimization, 65 (2016), 1337–1347.  (SCI)

    32.   Yu Han,   Xun-hua Gong, Levitin-Polyak well-posedness of symmetric vector 

    quasi-equilibrium  problems, Optimization, 64 (2015), 1537–1545.  (SCI)

    33.   Yu Han,   Xun-hua Gong, Lower semicontinuity of solution mapping to 

    parametric generalized strong vector equilibrium problems, Applied Mathematics  

    Letters, 28 (2014), 38–41.  (SCI)

     获奖情况

    2016年博士研究生国家奖学金;

    2015年博士研究生国家奖学金;

    2013年硕士研究生国家奖学金

     其它情况

     无

 


下一篇: 江绍玫